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Abstract. We analyse electron micrographs which show projections of three-dimensional 
fractal aggregates. Shadowing and finite size effects in the projection are treated by cal- 
culations for two model systems, namely a single aggregate and a connected aggregate. The 
calculations allow us to obtain the fractal dimension of the aggregates from the measured 
effective dimensions on the micrographs. 

Aggregates of metal particles were produced by gas evaporation and studied by electron 
microscopy. We analysed the structure of the specimens by the connected-aggregate model. 
Fractal dimensions in the range 1.9 to 2.0 were found. This is in good agreement with the 
cluster-cluster aggregation model if the aggregating particles follow linear trajectories. 

1. Introduction 

The study of fractal structures in physics has recently attracted much interest (Man- 
delbrot 1983, Pietronero and Tosatti 1986). Fractal structures can be characterised by 
various experimental methods such as image analysis of electron micrographs (Forrest 
and Witten 1979, Chevalier et a1 1985, Tence et a1 1986) scattering of light, x-rays and 
neutrons (Teixeira 1986, Martin and Hurd 1987, Freltoft et a1 1986), and adsorption 
measurements (Pfeifer and Avnir 1983, Avnir et a1 1983,1984,1985). In this paper we 
consider the problem of obtaining the fractal dimension of a three-dimensional ( 3 ~ )  
structure from the analysis of a projection of the structure onto a plane. This problem 
arises frequently in the study of large colloidal or gas-evaporated aggregates by electron 
microscopy. In order to establish the growth mechanisms of these aggregates it is of 
prime importance to have access to reliable methods of estimating the fractal dimension 
from electron micrographs. 

In § 2 below we formulate a theoretical model for the projection of a fractal structure 
onto a plane. The model takes into account the finite correlation length as discussed by 
Tence et al (1986), but we also include the effect that all particles are not seen in the 
image because they are shadowing each other. Our model is applicable to the analysis 
of bright-field electron microscopy, while effects of shadowing do not enter when annular 
dark-field images (Chevalier et aZ1985) are analysed, as noted by Tence et a1 (1986). We 
analyse the effects of shadowing and of cut-offs to the fractal structure for two model 

0953-8984/89/142451 + 13 $02.50 @ 1989 IOP Publishing Ltd 2451 



2452 T Farestam and G A Niklasson 

structures, namely a single-aggregate model and a connected-aggregate model. Our 
computations enable us to correct the measured effective dimension of the projected 
image in order to obtain the real fractal dimension of the structure. 

Subsequently in § 3 we apply our theoretical models to an experimental system, i.e. 
aggregates of gas-evaporated metal particles. The experimental effective dimensions 
are well accounted for by the connected-aggregate model. The fractal dimensions of the 
aggregates are found to be higher than in a previous study (Niklasson 1987), which did 
not correct the data for the effects of the projection. Our results are in good agreement 
with computer simulations using the cluster-cluster aggregation model with linear tra- 
jectories (Meakin 1984, Ball and Jullien 1984, Meakin 1985). Finally in § 4 we give some 
concluding remarks. 

2. Theoretical models 

In this section we study the effect on the measured effective dimension, Deff, of the 
projection of a 3~ fractal aggregate to a plane. The effective dimension can be obtained 
from the 2~ image by measurement of the pair correlation function or by the ‘nesting 
squares’ method (Forrest and Witten 1979). From the measured Deff we want to obtain 
information on the fractal dimension of the aggregate, D. 

We consider two different models for a fractal structure. The structure is taken to be 
fractal for length scales between the size of the individual building blocks, a ,  and a certain 
correlation length, E ,  In the single-aggregate model we take the mass density of the 
structure to be zero for length scales larger than 5. This model should be applicable to 
dilute dispersions of fractal aggregates. In the connected-aggregate model, on the other 
hand, the mass density of the structure is assumed to have a constant value for length 
scales larger than the correlation length. This model should be applicable to materials 
which display a crossover between fractal and non-fractal structure at the correlation 
length E .  

For infinite ( E - +  m) fractal structures the projection of a 3D aggregate to 2~ does not 
affect the value of the fractal dimension as long as D is less than two (Mandelbrot 1983). 
For D > 2 the projection has Deff = 2, which is the dimensionality of the plane of 
projection. In reality E has a finite value and thus finite size effects will affect the 
measured De, of the projected image. We study the effects of a finite correlation length 
and of shadowing by calculations for a model structure. 

2.1. Single-aggregate model  

In order to calculate the projection effects we specify a model for a single fractal cluster. 
We study a continuous representation of a 3D spherically symmetric fractal aggregate 
with total mass M and correlation length E .  The mass density p(r) is taken to be 

The mass can be written as M = Nm,, where N = (E/.)” is the number of particles and 
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Figure 1. Geometry for projection of a spherically sym- 
metricobject onto the 17-plane. The cylinder used for the 
calculation in ( 2 )  is also shown. 

mp is the mass of a single particle. The geometry is illustrated in figure 1. The radial 
coordinate in a coordinate system centred on the aggregate is denoted by r ,  while q is 
the radial coordinate in the plane of projection. The angle 8 is defined by the relation 
sin 8 = q / r .  We now normalise the coordinate in the plane with respect to the correlation 
length and introduce the notation q = q/g. 

First we calculate the effective dimension for the case when shadowing is neglected, 
and only the finite size of the aggregate is taken into account. Later we will also consider 
effects of shadowing. In what follows we put mp = 1, i.e. we measure the mass in number 
of particles. The first step of the calculation is to consider a cylinder of radius q ,  whose 
axis goes through the centre of the aggregate (figure 1). The number of particles within 
radius q ,  No,  is then given by (Tence et a1 1986) 

D 5 
N o ( q )  = 4~ 1 r2p( r )  dr  + 4 n  lo (1 - cos 8 ) r 2 p ( r )  dr .  

0 

In terms of the normalised coordinates this is equivalent to 

where 

f ( q )  = 1' (1 - m) dz/zD+'.  
4 

Equation (3) now gives the number of particles projected onto the plane within a distance 
q of the origin. Figure 2 shows a log-log plot of No/N as a function of q for different 
values of D. The effective dimension of the projection is defined by No(q)  = kqDeff ,  
where k is a constant. It is immediately seen that Deff is given by the slopes of the curves 
in figure 2. In figure 3 we show the quantity (Defi - D) as a function of D for several 
values of q. It is seen that the difference (Deff - D) is small for fractal dimensions close 
to unity and for small q,  but it increases quickly as we increase D and q. 

When projecting a fractal structure onto aplane, some of the particles in the structure 
must necessarily shadow each other. We now include in our model the probability that 
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Figure2. Log-log plot of normalised number of particlesNo/Nas afunction of the normalised 
coordinate q ( = u / e ,  cf figure 1) in the plane of projection. Curves denote results for fractal 
dimensions between 1.5 (top) and 2.5 (bottom). The difference in D between consecutive 
curves is 0.1. 

-0.2 

-0.4 

? - - 
0" 

-0.6 

-0.8 

0.1 5 
0.20 

u.4u - - c 

t- \' 

1.5 2.0 

0 

Figure 3. Values of Defr - D, calculated by the single-aggregate model, as a function of the 
fractal dimension D for various values of the coordinate in the plane q. Effects of shadowing 
are not taken into account. 

particles shadow each other. The basic idea can be illustrated by a simple example. Take 
100 cubes, put them on top of one another and assume that the probability for a cube to 
be occupied is 0.01 and for it to be empty is 0.99. If the stack of cubes is projected onto 
a plane the probability is 1 - 0.99lo0 = 0.63 that we see an occupied square in the plane 
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of projection. Generally we consider a large number, n ,  of cubes in a stack and take the 
probability for a cube to be occupied to be equal to no/n. The probability to obtain an 
occupied square in the projection then becomes, in the limit of large n 

lim[l - (1 - no/n)fl]  = 1 - exp(-no). 
n-m 

Shadowing effects in the projection of a fractal aggregate are completely analogous, and 
we obtain the area fraction of occupied sites, a(q), from the relation 

4 q )  = 1 - exP(-P(q)). (4 )  
Here p(q) is the average number of projected particles at distance q. This can be 
evaluated from the projected number of particles within distance q No(q)  in (3). We 
obtain 

In order to make contact with experiments we need to evaluate the number of observed 
particles within a distance q in the plane of projection. This surface coverage N,(q)  is 
given by 

NI (4 )  = < f 2 / n a 2 >  44) 2nq’ dq‘  (6) I,: 
where a(q’) is given in (4) .  A closed expression for N,(q) is now easily obtained from 
(3)-(6). The final expression becomes 

The effective dimension Deff can be obtained from (7)  by use of the identity N,(q) = 
kqDeff.  Figure 4 shows (Def f  - D )  as a function of D for this case. It is seen that the 
correction (Deff - D )  is smaller when Deff is obtained from (7)  than when it is obtained 
from (3). Thus the corrections become smaller when shadowing is included. 

In figure 5 we show Deff  as a function of the coordinate q for several values of the 
fractal dimension D. This plot is very convenient for comparison with experiments. The 
fractal dimension of the sample can then be found by comparing an experimental D,,(q) 
with the curves in figure 5 .  

2.2. The connected-aggregate model 

In many cases fractal aggregates are connected into a network. This structure arises for 
example in gas-evaporated aggregates and can be described as a fractal structure which 
is embedded in a non-fractal surrounding. Therefore we now use a model with the mass 
density constant and equal to the mean density ps when r > f ,  namely 

We take a cube of side length 2Lj, and inside it we place a sphere of radius containing 
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Figure 4. Values of Deff - D ,  calculated by the single-aggregate model, as a function of the 
fractal dimension D and distance q. Shadowing effects are included and t / a  = 100. 
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Figure 5 .  Effective dimension Deff in the single-aggregate model as a function of distance q 
for various values of the fractal dimension D. ( e / a  = 100.) 

a fractal aggregate. The density in the volume between the sphere and the cube is p( r )  = 
ps according to (8). 

We now project the particles in this volume onto a plane. The average number of 
projected particles within distance q from the origin is then given by 

N,(q)  = & J , ( E / ~ ) ~ [ J T ~ ’  + 2;2(1 - q2)3 /2 /3  - 2n/3].  (9) 
When considering the connected-aggregate model we have two contributions to the 
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Figure6. Effective dimension Deffin the connected-aggregate model as a function of distance 
q for various values of the fractal dimension D. (g /a  = 100.) 

number of projected particles, namely from the fractal aggregate in the sphere (3) and 
from the volume between the sphere and the cube (9). The calculations for this model 
are completely analogous to those for the single-aggregate model in § 2.1. The quantity 
p(q) in ( 5 )  must be replaced by the sum of the two contributions discussed above and is 
given by 

Ptot(4) = + ~ ( q ) .  
Here p ( q )  is given by ( 5 )  as before. In addition p r ( q )  is obtained from (5) when we 
replace No(q)  by Nr(q)  from (9). The surface coverage for the connected-aggregate 
model, N2(q) ,  is given again by (4) and (6) if ptot(q) is used instead of p(q) in (4). The 
final expressions for ptot(q) and N,(q) now become 

P t o t ( 4  = (E/a>”-”%”-*/2> ( 1  + D f ( 4  + q(d/dqlf(q)) + - -11 (10) 

and 

The effective dimension can be obtained from (11) in the same way as for the single- 
aggregate model. Physically we can place some requirements on the function Deff(q). It 
is easy to show that Deff must approach two as q goes towards zero and unity. This is so 
because the structure becomes non-fractal inside a single particle ( r  < a) and outside the 
correlation length ( r  > 5). Figure 6 shows Deff as a function of q for the connected- 
aggregate model. It is seen that Deff(q) satisfies the physical limits we mentioned above. 
A shortcoming of the model is that it does not take into account all finite size effects. We 
do not in reality deal with a mass density as in the model but instead we have a number 
of discrete particles. Thus it is obvious that the model does not work well when q is of 
the order a. Also the form of p ( r )  for r > 5: may be different in different physical 
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situations. For example p ( r )  may have oscillations superimposed on the constant value 
ps. Hence our model must be regarded as an approximation for large r. From figures 5 
and 6 it is seen that the connected-aggregate and single-aggregate models give very 
similar results for small values of q. Only when q > 0.4 to 0.5 do considerable differences 
appear. In order to distinguish between the models, the effective dimension has to be 
measured over the whole range of q between zero and unity. On the other hand, if Deff 
is measured at low q only, the precise form of the outer cut-off to the fractal structure 
does not enter in the estimation of the fractal dimension D. These considerations are 
important when comparing with experiments as we proceed to do in the next section. 

3. Experimental results 

In this section we compare the results of our calculations to experiments on a real system, 
namely gas-evaporated aggregates of metal particles. The agreement is found to be 
satisfactory, which points to the usefulness of our method for the determination of the 
fractal dimension. The structural analysis is of interest in order to understand the growth 
of the aggregates. 

Gas evaporation takes place from an evaporation source, usually a tungsten coil, in 
a few torr of an inert gas such as helium, argon or nitrogen. Sometimes a small addition 
of oxygen is used in order to grow oxide coatings on the metal particles during the 
evaporation. The particles grow and form extended aggregates in the gas phase. This 
process has been extensively studied; for a review see, for example, Granqvist and 
Buhrman (1976). The metal atoms which escape from the evaporation source rapidly 
lose their energy by collisions with the gas atoms. This leads to a local supersaturation 
of metal and to homogeneous nucleation of metal clusters. Subsequently the metal nuclei 
grow by coalescence to form larger particles; probably this growth takes place in a region 
close to the evaporation source (Granqvist and Buhrman 1976). The vapour temperature 
must be quite high, i.e. in excess of 200-400 "C, for coalescence to take place (Kaito and 
Shiojiri 1982, Kaito 1985). At lower vapour temperatures the particles instead stick to 
one another when they collide eventually forming large porous aggregates (Forrest and 
Witten 1979). The aggregates are transported by gas convection in the evaporation 
chamber and can be collected on a substrate. The deposits are soot-like loosely packed 
powders having a volume fraction of metal usually of the order of one per cent. The 
average thickness of the deposits can be appreciable; typically it is around 10 pm or even 
larger, as determined by optical microscopy, Clearly the gas-evaporated metal deposits 
form a 3~ porous coating on the substrate. 

We have examined a number of gas-evaporated aggregates, deposited onto carbon- 
covered copper grids, by electron microscopy. The evaporation and preparation con- 
ditions are listed in table 1. Most of the samples were studied in the as-deposited state. 
One sample of Ni particles was partially oxidised by heating to 400 "C in air prior to 
electron microscopy. Some samples of A1 particles were stored in a container for about 
10 years. The powder was then mixed with ethanol and aggregates were collected on 
copper grids. 

Figure 7 shows an electron micrograph of an aggregate of ultrafine A1 particles 
evaporated in 3 Torr helium with a small addition of oxygen. It is seen that the metal 
particles form an aggregated structure consisting of clusters and chains of particles. The 
micrograph is a 2~ image of the 3D aggregate. 
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Table 1 .  Preparation conditions, correlation length divided by particle radius, E/a, and 
fractal dimensions D for metal particle aggregates. 

Metal Evaporated in E/a D 

AI 1.5 Torr Ar + O2 -90 1.97 
AI 1.5 Torr Ar + O2 -60 2.02 

AI 3 Torr He + O2 -90 1.91 

CO 1 Torr He -40 1.95 
Cr 2.5 Torr Ar + 0.1 Torr air -60 1.95 
Fe 2 Torr Ar -15 1.90 
Ni 2 Torr Ar -90 1.91 
Ni 2 Torr Ar and oxidised at 400 "C in air - 10 1.95 

Figure7. Electron micrograph of AI aggregatesevaporated in 3 Torr He with a small addition 
of oxygen. The bar in the figure denotes lo0 nm. 

In order to determine whether the aggregates are fractal and to find the fractal 
dimension from the micrographs we first evaluated the pair correlation function of the 
particles. We measured the centre-to-centre distances between all particles within a 
certain area on the micrograph. The number of particles, N ,  within a distance r j  from a 
starting point was then obtained and averaged by taking each particle in turn as the 
starting point. This averaging was necessary in order to get good statistics. The pair 
correlation function can now be obtained from 

gz(rj) = N ( r j ) / X r j 2 P s  (12) 

where ps is the average particle density. 
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Figure 8. Log-log plot of the pair correlation function (in arbitrary units) as a function of 
the distance for the AI particles shown in figure 7.  The broken line indicates a linear fit to 
g2(q)  - q’-2,  with D = 1.75. 

Figure 8 shows the logarithm of g z ( q )  for the A1 particles depicted in figure 7. The 
pair correlation function reaches a plateau at a distance of a few times the diameter of a 
single particle and then starts to decrease. This decrease signifies an unambiguous 
departure from a random arrangement of particles. At larger q the curve can be approxi- 
mated by a straight line, as shown in the figure. A fit to the relation 

at large q gives D = 1.75. 
Now we want to ascertain whether the effects of projecting a 3~ fractal structure onto 

a ZD micrograph are present in the data. Such effects would lead to a corrected value 
for the fractal dimension, as discussed in § 2. To this end we evaluate the effective 
dimensionality defined in § 2 from the relation 

Defdr) = 2 + d(loggz(rl))/d(log 11). (14) 

It is seen that De,,( q )  - 2 is just the slope of the log-log plot of gz( q )  at distance q .  Deff( q )  
was calculated numerically from the experimental data. Figure 9 shows the results for 
the A1 particles in figure 7. Here we normalised q by the correlation length, E ,  which 
was estimated from the average cluster size on the micrograph. It is seen that the effective 
dimension decreases at small q and reaches a minimum at q - 0.6. This behaviour can 
be described by the connected-aggregate model, figure 5 ,  but is not in line with the 
single-aggregate model. Figure 9 shows that our experimental data are in satisfactory 
agreement with calculations for the connected-aggregate model with D = 1.91. At short 
distances the effective dimension seems to be somewhat higher than expected from the 
calculations. This effect was seen in all our samples and is probably due to the size of the 
individual particles and the width of the size distribution of individual particles, which 
were not taken into account in the calculations. The connected-aggregate model gave a 
better fit to our experimental data than the single-aggregate model for all our samples 
of gas-evaporated particles. 
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Figure 9. Effective dimension as a function of distance on the micrograph, q!  for the AI 
particles shown in figure 7. Dots denote experimental data and the full curve shows a 
calculation by the connected-aggregate model with D = 1.91. 

This kind of analysis was performed for the samples listed in table 1. The results were 
obtained from the analysis of one micrograph of each sample. The corrected value of the 
fractal dimension was determined by comparing the plots of D,,,(q) against normalised 
distance with our calculations. The corrections always increased the value of D ,  as 
expected. The accuracy by which D can be determined depends on the noise in the 
experimental data; the uncertainty in D is usually k0.03 to 0.04. The values of the fractal 
dimension listed in table 1 fall, with two exceptions, in the range 1.90 to 1.95. The 
exceptions are the samples which had been stored for a long time before examination. 
However, we feel that the differences between the fractal dimensions are too small to 
permit any conclusions to be drawn from this. It is interesting to note that the kind of 
evaporated metal and the range of evaporation conditions explored in this paper seem 
to have very little influence on the fractal dimension. It should, however, be noted that 
strong dipolar interactions between the particles lead to a considerably lower fractal 
dimension of the aggregates. Such effects have recently been observed in aggregates 
composed of ferromagnetic CO particles (Niklasson et a1 1988). 

We now discuss the growth mechanisms of gas-evaporated aggregates. Situations 
where large aggregates are formed from smaller aggregates and single particles can be 
treated by cluster-cluster aggregation models (Meakin 1983, Kolb eta1 1983). Computer 
simulations show that 3~ cluster-cluster aggregates have fractal dimensions of 1.75-1.8 
for the case of random-walk trajectories (Meakin 1984, Jullien et a1 1984b). For linear 
trajectories the fractal dimension is somewhat higher. Off-lattice computer simulations 
give values of D in the range 1.87-2.0 (Meakin 1984, Ball and Jullien 1984, Meakin 
1985). It has also been found that effects of structural readjustments (Meakin and Jullien 
1985) and fragmentation (Kolb 1986) can increase the fractal dimension of cluster- 
cluster aggregates noticeably. 

Our experimental fractal dimensions are in good agreement with the cluster-cluster 
aggregation model with linear trajectories. Linear trajectories are also physically reason- 
able in gas evaporation. At  a gas pressure of 1 Torr the mean free path of aggregates 
moving in the gas can be estimated to be 50 to 100 pm. This is much larger than a single 
particle and about 100 times larger than a typical aggregate. Random-walk trajectories 
with mean free paths much larger than typical aggregate sizes give fractal dimensions 
very similar to the case of linear trajectories (Jullien et a1 1984a). 

To sum up, aggregation of metal particles in a low pressure gas can be described 
by the cluster-cluster model with linear trajectories. On the other hand, in colloidal 
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aggregation (Weitz and Oliveria 1984, Weitz et a1 1985) the mean free paths are very 
short leading to random-walk trajectories and lower fractal dimensions. 

4. Conclusions 

In this paper we have addressed the problem of determining fractal dimensions from 
electron micrographs, which show a projection of the structure onto a plane. We 
formulated two models for the calculations of the structural characteristics in the pro- 
jected image. The single-aggregate model should be applicable to a dilute dispersion of 
fractal aggregates, while the connected-aggregate model should be valid for fractal 
aggregates forming a percolating network. We have analysed the structure of aggregates 
of metal particles produced by gas evaporation by the above-mentioned models. Our 
experimental effective dimensions are in good agreement with calculations by the con- 
nected-aggregate model. This means that we can use the model to obtain the fractal 
dimension of the aggregate from the measured effective dimensions. The fractal dimen- 
sion gives information on the growth mechanisms of the aggregates. 

Aggregates of metal particles produced by gas evaporation were shown to have 
fractal dimensions in the range 1.9-2.0. These values are close to the predictions of 
cluster-cluster aggregation models with linear trajectories. The fractal dimension is 
fairly insensitive to the metal used and the evaporation conditions for systems where 
dipolar interactions between the particles can be neglected. We can now distinguish at 
least three different kinds of cluster-cluster aggregation. Aggregation in the gas phase 
with linear trajectories gives D - 1.9-2.0, while colloidal aggregation with Brownian 
trajectories leads to D - 1.75-1.8 (Weitz and Oliveria 1984, Weitz et a1 1985). Finally 
aggregation of ferromagnetic particles leads to still lower fractal dimensions, namely 
D - 1.4-1.6 (Niklasson et a1 1988). 
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